Indústria

- É necessário simular escoamentos complexos
 - Multicomponentes (carro, avião)
 - Não homogêneos
 - Alto no. Reynolds
 - Multifásico e reagente
- Necessidade resultados em 1 h a no máximo 1 dia
 - Muitos parâmetros para investigar
 - Ferramenta de desenvolvimento
- Recursos computacionais limitados
- Custo das simulações é importante

Necessita-se de metodologias rápidas e robustas

Pesquisa

- Limitada a geometrias simples (ou simplificadas)
 - Escoamento isotrópico (condições de contorno periódicas)
 - Escoamento de camada limite turbulenta
 - Escoamento ao redor de aerofólio
- Não há limite de tempo: simulações podem durar 1 ano ou mais
- Acesso aos maiores computadores do mundo (> 1 Peta Flops)
- Custo não é importante
 - Custo focado em poucas grandes simulações
 - Dados acessíveis para a comunidade científica mundial
 - Custo deve ser relacionado com desenvolvimento científico

Simulação numérica é uma ferramenta para compreender a física Necessita algoritmos otimizados e resultados acurados

- Depende da transferência de energia entre as escalas
- Conceito de universalidade do Reynolds

- Universalidade é válida em regiões longe de fronteiras (paredes), onde a turbulência é aproximadamente isotrópica e homogênea
- Falha nas regiões de paredes, onde a turbulência é anisotrópica e nãohomogêneas

Níveis de modelagem

Multiscale & Multiresolution approaches for turbulence Sagaut, Deck & Terracol, Imperial College Press, 2006

Indústria

- Maioria das simulações são RANS
- Escoamentos transientes restritos a partes específicas do escoamento (URANS, DES, LES)
- Uso de técnicas numéricas robustas

Pesquisa

- Utilizado quando há interesse em entender a física de escoamentos transientes turbulentos
- Popularidade vem crescendo muito desde 1980 com uso de DNS e LES
- Pesquisa intensiva no desenvolvimento de modelos de turbulência
 - Auxilia no desenvolvimento de modelos RANS

Lista dos 500 top supercomputadores

MFlops Rmax % of Power Rank Site Computer Country Cores [Pflops] Peak /Watt [MW] DOE / OS Titan, Cray XK7 (16C) + Nvidia 1 USA 560,640 17.6 66 8.3 2120 Oak Ridge Nat Lab Kepler GPU (14c) + custom DOE / NNSA Seguoia, BlueGene/Q (16c) 2 1,572,864 16.3 81 7.9 2063 L Livermore Nat Lab + custom **RIKEN Advanced Inst** K computer Fujitsu SPARC64 3 705,024 10,5 93 12.7 827 for Comp Sci VIIIfx (8c) + custom DOE / OS Mira, BlueGene/Q (16c) 786,432 8.16 2066 4 81 3.95 Argonne Nat Lab + custom JuQUEEN, BlueGene/Q (16c) Forschungszentrum 5 393,216 4.14 82 1.97 2102 Germany Juelich + custom Leibniz SuperMUC, Intel (8c) + IB 147,456 2.90 90* 3,42 848 German Rechenzentrum Texas Advanced Stampede, Dell Intel (8) + Intel 7 USA 204,900 2.66 67 806 3.3 **Computing Center** Xeon Phi (61) + IB Tianhe-1A, NUDT Nat. SuperComputer Intel (6c) + Nvidia Fermi GPU 186,368 2.57 8 55 4.04 636 Center in Tianjin (14c) + custom Fermi, BlueGene/Q (16c) 0 CINECA Italy 163,840 1.73 82 2105 822 + custom DARPA Trial System, Power7 10 IBM 63,360 1.51 78 358 422 (8C) + custom

2012

From J. Dongarra, "On the Future of High Performance Computing: How to Think for Peta and Exascale Computing" (2012)

is in Figh Performance Computing and Challenges for the Future, with Jack Donga						rra			
	S								
	ICL UT	Novemb	per 2016: The	TOP	$10 \mathrm{S}$	yste	ms		
	Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlop Wat
	1	National Super Computer Center in Wuxi	Sunway TaihuLight, SW26010 (260C) + Custom	China	10,649,000	93.0	74	15.4	6.04
	2	National Super Computer Center in Guangzhou	Tianhe-2 NUDT, Xeon (12C) + IntelXeon Phi (57C) + Custom	China	3,120,000	33.9	62	17.8	1.91
	3	DOE / OS Oak Ridge Nat Lab	Titan, Cray XK7, AMD (16C) + Nvidia Kepler GPU (14C) + Custom	USA	560,640	17.6	65	8.21	2.14
	4	DOE / NNSA L Livermore Nat Lab	Sequoia, BlueGene/Q (16C) + custom	- in	1,572,864	17.2	85	7.89	2.18
	5	DOE / OS L Berkeley Nat Lab	Cori, Cray XC40, Xeon Phi (68C) + Custom		622,336	14.0	50	3.94	3.55
	6	Joint Center for Advanced HPC	Oakforest-PACS, Fujitsu Primergy CX1640, Xeon Phi (68C) + Omni-Path	-	558,144	13.6	54	2.72	4.98
	7	RIKEN Advanced Inst for Comp Sci	K computer Fujitsu SPARC64 VIIIfx (8C) + Custom		705,024	10.5	93	12.7	.827
	8	Swiss CSC5	Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100(56C) + Custom	Swiss	206,720	9.78	61	1.31	7.45
	9	DOE / OS Argonne Nat Lab	Mira, BlueGene/Q (16C) + Custom		786,432	8.59	85	3.95	2.07
	10	DOE / NNSA / Los Alamos & Sandia	Trinity, Cray XC40,Xeon (16C) + Custom	-	301,056	8.10	80	4.23	1.92

China

5440

.286

71

Inspur Intel (8C) + Nnvidia

Aumento exponencial da capacidade de processamento e de memória

500 Internet of

Supercomputadores com paralelização maciça

"Current Trends in High Performance Computing and Challenges for the Future," with Jack Dongarra

Lista dos 10 top supercomputadores

ls in High Performance Computing and Challenges for the Future" with Jack Dongarra

<u>^</u>								
ICL UT	November 2016: The TOP 10 Systems							
Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt
1	National Super Computer Center in Wuxi	Sunway TaihuLight, SW26010 (260C) + Custom	China	10,649,000	93.0	74	15.4	6.04
2	National Super Computer Center in Guangzhou	Tianhe-2 NUDT, Xeon (12C) + IntelXeon Phi (57C) + Custom	China	3,120,000	33.9	62	17.8	1.91
3	DOE / OS Oak Ridge Nat Lab	Titan, Cray XK7, AMD (16C) + Nvidia Kepler GPU (14C) + Custom	USA	560,640	17.6	65	8.21	2.14
4	DOE / NNSA L Livermore Nat Lab	Sequoia, BlueGene/Q (16C) + custom	- She	1,572,864	17.2	85	7.89	2.18
5	DOE / OS L Berkeley Nat Lab	Cori, Cray XC40, Xeon Phi (68C) + Custom	-	622,336	14.0	50	3.94	3.55
6	Joint Center for Advanced HPC	Oakforest-PACS, Fujitsu Primergy CX1640, Xeon Phi (68C) + Omni-Path	-	558,144	13.6	54	2.72	4.98
7	RIKEN Advanced Inst for Comp Sci	K computer Fujitsu SPARC64 VIIIfx (8C) + Custom		705,024	10.5	93	12.7	.827
8	Swiss CSC5	Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100(56C) + Custom	Swiss	206,720	9.78	61	1.31	7.45
9	DOE / OS Argonne Nat Lab	Mira, BlueGene/Q (16C) + Custom		786,432	8.59	85	3.95	2.07
10	DOE / NNSA / Los Alamos & Sandia	Trinity, Cray XC40,Xeon (16C) + Custom	1	301,056	8.10	80	4.23	1.92
500	Internet company	Inspur Intel (8C) + Nnvidia	China	5440	.286	71		-

- Aumento exponencial da capacidade de processamento e de memória
- Supercomputadores com paralelização maciça

"Current Trends in High Performance Computing and Challenges for the Future," with Jack Dongarra

- Como mencionado, a turbulência depende da transferência de energia entre as escalas
- Para facilitar a análise da energia é conveniente trabalhar no domínio espectral
- Espectro de energia E(k) define como a energia é distribuída entre as escalas

Domínio da frequência

 Definindo Transformada de Fourier do campo de velocidade u

$$\hat{u}_i(\mathbf{k}) = \frac{1}{(2\pi)^3} \int \int \int u_i(\mathbf{x}) e^{-i\mathbf{k}\cdot\mathbf{x}} d^3\mathbf{x}$$

 Para turbulência homogênea e isotrópica, pode-se definir a função espectral isotrópica 3D por

$$\mathbb{E}(k) = \iint \hat{u}_i(\mathbf{k}) \hat{u}_i^*(\mathbf{k}) dS(\mathbf{k})$$

- ds(k) é o elemento de superfície da esfera
- Significa "*" número conjugado complexo
- $k=|\mathbf{k}| = \sqrt{\mathbf{k}^2}$ é o modulo do número de onda **k**

Espectro de energia de escoamento turbulento

k_m é o inverso da escala de injeção de energia

Porque modelos são necessários

Níveis de modelagem

RANS

- Simulação da média estatística
- Todas as escalas são modeladas

- Simulação transiente das grandes escalas
- Modelagem somente da escalas submalha

URANS

- Simulação transiente das grandes escalas
- Todas as escalas são modeladas

- LES desenvolvida a partir de aspectos físicos da turbulência
- Trata da transferência de energia entre as escalas
 - Maior parte da energia cinética concentra-se nos baixos números de onda (sub-faixa inercial)
 - Menores escalas (maiores números de onda) contém fração pequena e insignificante da energia
 - Menores escalas sentem menos a influência das paredes
 - Menos sensíveis à geometria e mais universais

Conclusão

 A redução da complexidade da simulação (número de graus de liberdade – NGL) pode ser realizada pela eliminação de pequenas escalas

LES utiliza conceito de filtragem

- Como a filtragem afeta a função original?
 - Tornando mais suave
 - Eliminando conteúdo de alta frequência (número de onda)
- Separa por filtro espacial as escalas presentes no escoamento
- Resolve numericamente apenas as grandes escalas
- Modela fisicamente as pequenas escalas

Modelos SGS (Sub-Grid Scale)

 Número de Reynolds não afeta o escoamento médio (a partir de um certo ponto)

- Trabalha-se no domínio da frequência
- Fourier: propriedades básicas

Operation Name	Signal ($f(t)$)	Transform ($F(\omega)$)
ADDITION	$f_1(t) + f_2(t)$	$F_1(\omega) + F_2(\omega)$
SCALAR MULTIPLICATION	$\alpha f(t)$	$\alpha F(t)$
SYMMETRY	F(t)	$2 \pi f(-\omega)$
TIME SCALING	$f(\alpha t)$	$\frac{1}{ \alpha }F\left(\frac{\omega}{\alpha}\right)$
TIME SHIFT	$f(t-\tau)$	$F(\boldsymbol{\omega}) e^{-(\dot{\pi} \boldsymbol{\omega} \cdot \boldsymbol{\tau})}$
MODULATION (FREQUENCY SHIFT)	$f(t) e^{i t \phi t}$	$F(\boldsymbol{\omega}-\boldsymbol{\phi})$
	$(f_{1}(t),f_{2}\left(t\right))$	$F_{1}(t)F_{2}\left(t\right)$
CONVOLUTION IN FREQUENCY	$f_1(t) f_2(t)$	$\frac{1}{2\pi}(F_1(t), F_2(t))$
	$\frac{\mathrm{d}''}{\mathrm{d}r^n}f(t)$	$(\dot{z} \omega)^n F(\omega)$

http://cnx.org/content/m10100/latest/ http://jhu.edu/~signals/convolve/index.html

Filtro - convolução

- Eliminar altas frequências=suavizar=filtrar
 - Multiplicar no domínio de Fourier = Convoluir no domínio do tempo

Filtro - convolução

- Filtros para turbulência homogênea isotrópica
- Pequenas e grandes escalas são separadas usando filtro baixa

filtro de convolução

$$\overline{\Phi}(\mathbf{x}) = \int_{-\infty}^{+\infty} \Phi(\mathbf{x}, t) G(\mathbf{x} - \xi) d^3 \xi \qquad \overline{\widehat{\Phi}}(\mathbf{k}) = \widehat{G}(\mathbf{k})$$

espaço físico

espaço espectral

 $\Phi(\mathbf{k})$

Para filtrar as eqs de Navier-Stokes, o filtro deve satisfazer as seguintes propriedades: $a_{\pm\infty}$

1) Preservar constantes:

$$\overline{a} = a \iff \int_{-\infty}^{+\infty} G(\mathbf{x} - \xi) d^3 \xi = 1$$
$$\overline{\phi + \psi} = \overline{\phi} + \overline{\psi}$$

3) Comutatividade espacial e temporal $\frac{\overline{\partial \phi}}{\partial s} = \frac{\partial \overline{\phi}}{\partial s}, \quad s = x, t$

Filtro - convolução

- O filtro "cutoff" é o ideal para separar pequenas escalas das grandes escalas
- O filtro "gaussiano" é um bom compromisso
- Existem outras famílias de filtros possíveis (filtros implícitos) e podem ser relevantes para LES

Aplicando um filtro com boa propriedades na Eq. de Navier-Stokes

$$\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} (u_i u_j) = -\frac{\partial p}{\partial x_i} + 2\nu \frac{\partial}{\partial x_j} (S_{ij}), \qquad S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad p = P/\rho$$
$$\frac{\partial u_i}{\partial x_i} = 0$$

obtém-se

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\overline{u_i u_j}) = -\frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial}{\partial x_j} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$
$$\frac{\partial \overline{u}_i}{\partial x_i} = 0$$

definindo $u'_{i} = u_{i} - \overline{u}_{i}$ tem-se $\overline{u_{i}u_{j}} = (\overline{u}_{i} + u'_{i})(\overline{u}_{j} + u'_{j})$ $= \overline{u_{i}\overline{u_{j}}} + \underbrace{\overline{u_{i}u'_{j}}}_{C_{ij}} + \underbrace{\overline{u'_{i}u'_{j}}}_{R_{ij}} + \underbrace{\overline{u'_{i}u'_{j}}}_{R_{ij}}$ R_{ij}: tensor de Reynolds C_{ij}: tensor cruzados

 Introduzindo o termo não-linear calculado com quantidades filtradas, temse

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\overline{u}_i \overline{u}_j) = -\frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial}{\partial x_j} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) - \frac{\partial \tau_{ij}^*}{\partial x_j},$$

Tensor sub-malha $\tau_{ij}^* = \overline{u_i u_j} - \overline{\overline{u}_i \overline{u}_j} = C_{ij} + R_{ij}$

é o único termo modelado sendo composto por um campo não filtrado

• A seguinte decomposição também pode ser utilizada

$$\overline{\overline{u}_i \overline{u}_j} = (\underbrace{\overline{u}_i \overline{u}_j}_{L_{ii}} - \overline{u}_i \overline{u}_j)_{L_{ii}} + \overline{u}_i \overline{u}_j$$

é termo de Leonard, representa as interações entre as grandes escalas

O equação de quantidade de movimento torna-se

 L_{ii}

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (\overline{u}_{i} \overline{u}_{j}) = -\frac{\partial \overline{p}}{\partial x_{i}} + \nu \frac{\partial}{\partial x_{j}} \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{j}}{\partial x_{i}} \right) - \frac{\partial \tau_{ij}}{\partial x_{j}}$$
$$\tau_{ij} = L_{ij} + C_{ij} + R_{ij}$$

Importância dos termos difusivos

$$\frac{\partial}{\partial x_{j}} (\mu 2 S_{ij}) + \frac{\partial}{\partial x_{j}} (R_{ij}) + \frac{\partial}{\partial x_{j}} (L_{ij} + C_{ij})$$

$$D_{M} = \left\| \frac{\partial}{\partial x_{j}} (\mu 2 S_{ij}) \right\| \quad ; \quad D_{R} = \frac{\partial}{\partial x_{j}} (R_{ij}) \quad ; \quad D_{L} = \frac{\partial}{\partial x_{j}} (L_{ij} + C_{ij})$$

Transferência de energia

Equação da energia para escalas resolvidas $q_r^2 = \overline{u}_i \overline{u}_i / 2$

$$\frac{\partial q_r^2}{\partial t} = \underbrace{\overline{u_i \overline{u_j}}}_{I} \underbrace{\frac{\partial \overline{u_i}}{\partial x_j}}_{I} + \tau_{ij} \underbrace{\frac{\partial \overline{u_i}}{\partial x_j}}_{II} - \underbrace{\nu \frac{\partial \overline{u_i}}{\partial x_j}}_{III} - \underbrace{\frac{\partial}{\partial x_i} (\overline{u_i \overline{p}})}_{IV} + \underbrace{\frac{\partial}{\partial x_i} \left(\nu \frac{\partial q_r^2}{\partial x_i}\right)}_{V} - \underbrace{\frac{\partial}{\partial x_j} (\overline{u_i \overline{u_i \overline{u_j}}})}_{VI} - \underbrace{\frac{\partial}{\partial x_j} (\overline{u_i \tau_{ij}})}_{VI} + \underbrace{\frac{\partial}{\partial x_j} \left(\nu \frac{\partial q_r^2}{\partial x_i}\right)}_{V} - \underbrace{\frac{\partial}{\partial x_j} (\overline{u_i \overline{u_i \overline{u_j}}})}_{VI} - \underbrace{\frac{\partial}{\partial x_j} (\overline{u_i \tau_{ij}})}_{VII}$$

- I. produção
- II. dissipação turbulenta das escalas submalha
- III. dissipação devido a viscosidade molecular
- IV. difusão de pressão
- V. difusão por efeitos viscosos
- VI. difusão pelas interações entre as escalas resolvidas
- VII. difusão pela interações das escalas sub-malha

II+VII transferência de energia nas escalas submalha

Modelos de sub-malha

1. Modelo de viscosidade turbulenta: somente a parte dissipativa da energia da escala sub-malha é transferida T_{sgs}^{e}

$$\tau_{ij} - \frac{1}{3} \tau_{kk} \stackrel{\text{mod}}{=} -2 \nu_{sgs} \overline{S}_{ij} \qquad \nu_{SGS} = C_{ul} \hat{u} \hat{l}$$

- Modelos de similaridade de escala: baseados na hipótese de que a interação entre a menor das escalas resolvidas é do mesmo tipo que a interação entre a menor da escalas resolvida (conhecida) e a maior das escalas sub-filtros (desconhecida)
- 3. Modelos mistos: combina modelos de viscosidade turbulento com modelos de similaridade de escala
- Modelos baseados na *deconvolução* (parcial) das quantidades filtradas. Leva a reconstrução das escalas sub-filtro, as quais não são resolvidas explicitamente

Existem muitos outros modelos de submalha: SGS

Modelo de Smagorinsky

Este modelo foi proposto por Smagorinsky (1963), baseando-se na hipótese do equilíbrio local para as pequenas escalas, ou seja, que a produção de tensões turbulentas sub-malha seja igual à dissipação

$$s_{J} - c_{S}$$

$$\wp = -\overline{u'_i u'_j} S_{ij} = 2\nu_t S_{ij} S_{ij} \qquad \qquad \varepsilon = -c_1 \overline{\left(u'_i u'_i\right)}^{3/2} / \ell$$

Na expressão para ε ,

$$\overline{(u'_i u'_i)}^{1/2}$$
 e ℓ , são as escalas de velocidade e de comprimento respectivamente.

viscosidade turbulenta
$$V_t = c_1 \ell \overline{(u'_i u'_i)}$$

Modelo de Smagorinsky

 $C_s \sim 0,2$

Comprimento característico (volumes aprox cúbicos):

 $\bar{\Delta} = \sqrt[3]{V_c}$

Essa constante pode ser estimada para alto número de Reynolds para turbulência isotrópica por

 $C_s = \frac{1}{\pi} \left(\frac{2}{3C_k}\right)^{3/4}$

 C_k ~1,6 : constante de Kolmogorov $\ \Rightarrow C_s$ ~ 1,6

C_s não é constante !

 $\nu_{sgs} = C_s^2 \Delta^2 |\overline{S}|$

Depende de:

- escoamento (isotrópico, camada limite, etc)
- número de Reynolds
- Filtro: (L/ Δ e η/Δ)
- Discretização espacial e temporal (dissipação numérica)

 $C_s \sim 1,8 - 0,2$ para turbulência isotrópica

 $C_s \sim 0,065 - 0,1$ para escoamento turbulento cisalhante

Modelo de Smagorinsky

O modelo de Smagorisky é o modelo de sub-malha mais popular, MAS

- O tensor submalha é longe do valor ideal (de acordo com validações a priori)
- O modelo é baseado na hipótese da viscosidade turbulenta, mas Tsgs é não é somente dissipativo. Não é possível prever "escala reversa" de energia (backscatter"), i.e, energia transferida da escala sub-malha para as escalas resolvidas
- Previsão insatisfatória na região da parede (não pode ser utilizado na forma padrão. Muitas vezes é utilizado junto com leis de parede.
- A constante C_s deve ser adaptada para cada tipo de escoamento (o que é difícil para escoamentos complexos)
- Existem diversas modificações para superar algumas dessas dificuldades, ex: modelo dinâmico para cálculo de C_s

Modelo WALE (Wall Adaptive Large Eddy)

Modelo de viscosidade turbulenta baseado em uma operador para recuperar a escala correta na região da parede $(\nu_{sgs} \sim y^3)$

$$\overline{S}_{ij} = \frac{1}{2} (\partial_i \overline{u}_j + \partial_j \overline{u}_i)$$

$$\overline{G}_{ij} = \frac{1}{2} (\partial_k \overline{u}_i \partial_j \overline{u}_k + \partial_k \overline{u}_j \partial_i \overline{u}_k)$$

$$\overline{G}_{ij}^a = \overline{G}_{ij} - \delta_{ij} \overline{G}_{kk}$$

 Δ : tamanho característico do filtro

Modelo sub-malha Função Estrutura de Velocidade

 Pode-se calcular a viscosidade turbulenta e difusibidade turbulenta no espaço de Fourier (Chollet e Lesieur, 1982), resultando na seguinte expressão para a viscosidade turbulenta no espaço de Fourier:

$$v_t(k_c,t) = v_t^+ \sqrt{\frac{E(k_c,t)}{k_c}}$$

A constante v_t^+ é determinada fazendo-se um balanço de energia:

 $E(k,t) = C_{\kappa} \varepsilon^{2/3} k^{-5/3}$

$$\int_0^{k_c} 2\nu_t k^2 E(k,t) dk = \varepsilon(t)$$

Considerando-se

obtém-se

$$v_t^+ = (2/3)C_K^{-3/2}$$

- O cálculo da viscosidade turbulenta no espaço de Fourier exige determinar o nível de energia cinética turbulenta na freqüência de corte.
- Métais e Lesieur (1990) utilizando o conceito de Função Estrutura de Velocidade de Ordem 2, aplicaram este modelo no espaço físico:

$$F_{2}(\vec{x},r,t) = \|\vec{u}(\vec{x}+\vec{r},t) - \vec{u}(\vec{x},t)\|^{2}$$

Batchelor (1953), mostra que existe um dualismo entre a função estrutura (definida no espaço físico) e o espectro de energia (definido no espaço de Fourier), válido para turbulência homogênea e isotrópica. Combinando as duas formulações com o espectro de enrgia de Kolmogorov, obtém-se $E(\vec{x}, k_c, t) = 0.03\Delta F(\vec{x}, \Delta, t)$

Resultando em

$$V_t(\vec{x},\Delta,t) = 0.104C_K^{-3/2}\Delta\sqrt{\overline{F}_2(\vec{x},\Delta,t)}$$

$$\overline{F}_{2}(\vec{x},r,t) = \left\| \vec{\overline{u}}(\vec{x}+\vec{r},t) - \vec{\overline{u}}(\vec{x},t) \right\|_{\|\vec{r}\|=\Delta}^{2}$$

- Estes modelos são mais apropriados para escoamentos turbulentos plenamente desenvolvidos e fora de regiões parietais. Para escoamentos em transição e escoamentos parietais, um modelo alternativo foi proposto por Germano (1993)
- A modelagem sub-malha convencional envolve uma constante de proporcionalidade imposta de forma ad-hoc. Apesar das limitações advindas deste fato, conseguiu-se, nos últimos anos, avanços extremamente importantes na área de simulação numérica dos escoamentos turbulentos.
- Os resultados que podem ser obtidos em turbulência completamente desenvolvida e fora das regiões parietais colocam a LES hoje como uma ferramenta paralela à experimentação em laboratórios (Bradshaw et al., 1996, e Gharib, 1996).
- Uma das principais limitações diz respeito a análise de escoamentos em transição e nas proximidades de paredes, em conseqüência da imposição de uma constante de proporcionalidade
- A determinação dinâmica de uma função de proporcionalidade no cálculo da viscosidade turbulenta pode representar avanços importantes.

Modelo Dinâmico de Germano

Objetivo: permitir que C_s varie no tempo e no espaço e calcula um valor estimado

- A base desta modelagem é o uso de dois filtros com comprimentos característicos diferentes
- No primeiro, utiliza-se as dimensões da malha para calcular o seu comprimento característico. Ele é denominado filtro a nível da malha;
- No segundo utiliza-se um múltiplo das dimensões das malhas para calcular o comprimento característico. Ele é denominado filtro teste;
- Com base no uso dos dois níveis de escalas (acima da malha), conclui-se que, na modelagem dinâmica, utiliza-se informações do nível de energia contido nas menores escalas resolvidas, situadas entre as escalas dos dois filtros

Modelo Dinâmico de Germano

- Calcula o parâmetro do modelo a partir das menores escalas resolvidas
 - Análogo a um teste a priori
 - Como se a velocidade resolvida fosse exata
- Filtra o campo resolvido usando um "filtro teste" mais estreito
- Assume que o modelo se aplica aos dois níveis de filtragem com
 - Diferentes comprimentos característicos
 - Mesmo parâmetro (C_s no Smagorinsky)
- Resulta em um sistema de equações de onde se extrai o parâmetro
- O parâmetro é então ajustado automaticamente para cada:
 - Instante de tempo
 - Posição espacial da malha

 A base matemática dos modelos dinâmicos são as equação de Navier-Stokes:

$$\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} \left(u_i u_j \right) = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left(v \frac{\partial u_i}{\partial x_j} \right)$$

Primeiro processo de filtragem

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u_i u_i} \right) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(v \frac{\partial \overline{u}_i}{\partial x_j} \right)$$

Tensor de Reynolds sub-malha generalizado

$$\tau_{ij} = u_i u_j - \overline{u}_i \overline{u}_j$$

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u}_i \overline{u}_j \right) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial \overline{u}_i}{\partial x_j} - \tau_{ij} \right)$$

Aplica-se agora um novo filtro G, de comprimento característico superior ao comprimento do primeiro filtro ($\hat{\Delta} = 2\overline{\Delta}$), sobre a equação seguinte:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\overline{u_{i}} \overline{u_{i}} \right) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(v \frac{\partial \overline{u}_{i}}{\partial x_{j}} \right)$$

Obtém-se
$$\frac{\partial \hat{\overline{u}}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\frac{\Lambda}{u_{i}} \overline{u_{j}} \right) = -\frac{1}{\rho} \frac{\partial \hat{\overline{p}}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\frac{\partial \hat{\overline{u}}_{i}}{\partial x_{j}} \right)$$

 Define-se o tensor das tensões relativas ao segundo filtro, também chamadas de sub-teste, como sendo:

$$T_{ij} = \frac{\Lambda}{u_i u_j} - \hat{\overline{u}}_i \hat{\overline{u}}_j$$
$$\frac{\partial \hat{\overline{u}}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\hat{\overline{u}}_i \hat{\overline{u}}_j \right) = -\frac{1}{\rho} \frac{\partial \hat{\overline{p}}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(v \frac{\partial \hat{\overline{u}}_i}{\partial x_j} - T_{ij} \right)$$
(I)

Filtrando-se a seguinte equação:

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u}_i \overline{u}_j \right) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial \overline{u}_i}{\partial x_j} - \tau_{ij} \right)$$

Obtém-se

$$\frac{\partial \hat{\overline{u}}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\frac{\Lambda}{\overline{u}_i \overline{u}_j} \right) = -\frac{1}{\rho} \frac{\partial \hat{\overline{p}}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(v \frac{\partial \hat{\overline{u}}_i}{\partial x_j} - \hat{\tau}_{ij} \right) \tag{II}$$

(I)-(II)

$$\frac{\partial}{\partial x_j} \left(\frac{\bigwedge}{\overline{u}_i \overline{u}_j} - \hat{\overline{u}}_i \hat{\overline{u}}_j \right) = \frac{\partial}{\partial x_j} \left(T_{ij} - \hat{\tau}_{ij} \right)$$

$$L_{ij} = \left(\frac{\bigwedge}{\overline{u}_i \overline{u}_j} - \widehat{\overline{u}}_i \widehat{\overline{u}}_j \right) = \left(T_{ij} - \widehat{\tau}_{ij} \right)$$

tensor global de Leonard

 A parte anisotrópica do tensor de Reynolds global sub-malha pode ser modelada com a hipótese de Bousinesq

$$\tau_{ij} - \frac{\delta_{ij}}{3}\tau_{ij} = -2\nu_t \overline{S}_{ij} = -2c(\overline{x}, t)\overline{\Delta}^2 |\overline{S}| \overline{S}_{ij}$$

 Modelando-se as tensões sub-teste de Reynolds de forma análoga, tem-se:

$$T_{ij} - \frac{\delta_{ij}}{3} T_{ij} = -2c(\vec{x}, t)\hat{\Delta}^2 \left|\hat{\vec{S}}\right| \hat{\vec{S}}_{ij}$$

Filtrando-se a primeira destas duas equações, tem-se:

$$\hat{\tau}_{ij} - \frac{\delta_{ij}}{3}\hat{\tau}_{ij} = -2\nu_t \hat{\overline{S}}_{ij} = -2c(\vec{x}, t)\overline{\Delta}^2 \left| \overline{\overline{S}}_{ij} \right| \overline{\overline{S}}_{ij}$$

 Utilizando-se estas três equações, mais a identidade de Germano, isola-se a função de proporcionalidade procurada:

$$c(\vec{x},t) = -\frac{1}{2} \frac{L_{ij}M_{ij}}{M_{ij}M_{ij}}$$

$$M_{ij} = \hat{\overline{\Delta}}^2 \left| \hat{\overline{S}} \right| \hat{\overline{S}}_{ij} - \overline{\Delta}^2 \left| \frac{\Lambda}{\overline{S}} \right| \hat{\overline{S}}_{ij}$$

$$L_{ij} = \begin{pmatrix} \bigwedge_{\overline{u}_i \overline{u}_j} - \widehat{\overline{u}}_i \widehat{\overline{u}}_j \end{pmatrix}$$

- Vantagens:
 - Nenhum parâmetro a ser ajustado
 - Barato computacionalmente
 - Correto comportamento próximo à parede
 - Adequado a uma grande variedade de escoamentos:
 - Homogêneos
 - Rotacionais e estratificados
 - Degraus
 - etc:
- Desvantagens:
 - Parâmetro pode oscilar no tempo e espaço
 - Parâmetro pode se tornar negativo
 - Significado: cascata inversa?
 - Viscosidade negativa = instabilidade
 - Solução: médias ou "clipping"